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Theoretical  studies [1-3] ,  concerning the ignition of reacting sub- 
stances, deal with ignition by a heated infinite plate.  However, actual 
igniters have finite dimensions and a nonzero mean  surface curvature. 
Moreover, under actual conditions, in addition to unilateral heating of 
the reacting substance, there is heat transfer to the ambient  medium. 

This study, following [4], employs the methods of Shvets [8] and 
integral relations [6] to evaluate the effect of these factors on the 
process of ignition of a reacting substance. 

w We will consider the ignition of a reacting substance by a 
heated cylinder. We neglect  burnup and assume that the thermophysical  
coefficients are constants, which makes the heat capacity of the 
cylinder infinitely large. Then, mathemat ica l ly ,  the problem reduces 
to solving 

O~-O CO I O0 __ ~e 0 [ q!'oro~-E g' \ (i.i) 

with boundary and init ial  conditions 
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(1.2) 

Here, x is the dimensionless variable radius; r o is the cylinder 
radius; 6 is a dimensionless parameter ,  ~" is a dimensionless t ime,  q is 
the reaction energy; k is the thermal  conductivity; E is the activation 
energy; R is the universal gas constant; t is t ime; T.  is the temperature 
of the heated cylinder; T O is the initiaI temperature  of the reactant. 
0 is a dimensionless temperature;  p is density; c is specific heat; k 0 is 
the preexponential  factor. 

In deriving Eq. (1.1) the Frank-Kamenetskfi  transformation [7] for 
exp -- E/RT was empIoyed. 

Boundary-value problem (1.1) and (1.2) describes the ignition of a 
reactant by a heated wire which isinstantaneously heated to a t em-  
perature T,  which remains unchanged up to the moment  of ignition. 
wi th  a certain condition [8] this problem also describes the ignition of 
r e n t i n g  substances for first-order reactions. 

Since, under actual  conditions, the wire is heated gradually and 
has a finite heat capacity and the reactant is consumed, the heating 
t ime found from (12)  and (1.2) wi11 be less than the true value. 

By virtue of the exponential  temperature dependence of the 
chemical  reaction rate, an intense temperature  change occurs in a 
narrow boundary layer at the heated surface. Accordingly, it is de- 
sirable to introduce the thickness of the boundary layer A = A(r). Then 
boundary and init ial  conditions (1.2) take the form: 

0(1,  T ) = O ,  0 ( t - I -  a , ~ ) = - - O o ,  a ( o ) = o .  (1.8) 

To solve (1.1) and (1.8) we use the method of Shvets [8], which, 
apart from its simplicity, has good convergence [8]. As the first ap-  
proximation for the temperature we obtain 

Oo (x -- t ) (1.4) 
Or : A 

Substituting (1.4) into the right side of (1.1), integrating the result 
twice with respect to x, and using (1.8), we have 

Oo~ 80ca" 
02 = T (In x - -  1) ~ ~ [2 - -  31 ~ -+ z 3 @ (1 --  ~-) (A ~ - -  3)] + 

8A 2 8A Oo (2 -- z) 
+ 0~-o2 [l--e':P~] + O~;-o ~" (l-x)+ A +(i.8) 

0o 
@ ~ T { I  + (t-]- A) [ ln ( l  + A)-- I]}(i-- x). 

Satisfying 8hvets's condition OO/Ox = 0 at x = & [8], we obtain a 

first-order differential equation for A(r): 

3 in (1 @ A) 36A ~- (1.6) 
8 a n _  a + TS-?" 

Satisfying the Zel 'dovich condition 8e/0x = 0 at x = 0 [9], we find 

88(00-- I) A ~ 6( t  + A) ln ( l  . A )  (1.7) 
8AA' - -  0o ~ A 

Eliminating the quantity 6A&'; from Eq. (1.6) and (1.9), we obtain 

8 8o.~(3 + 2A,) In(l @ A,) (1.8) 
(20o -- 3) A.~ 

Solving Eq. (1.8), we find the thickness of the heated layer A,. 
Knowing A., we easily obtain the hearing t ime 

6 i A"-dA (1.9) 
~* -= -3-- ~., In (t -}- A) § 800-3A a ' 

0 

In the limit as 6 "-> % from (1.5) and (1.9), we obtain the t em-  
perature profile and the heating t ime for ignition by a heated plate. 

From (1.5) and (1.6) it is easy to see that at moderate values the 
perturbation of temperature  profiIe and boundary-layer thickness due 
to the heat of the chemical  reaction is small. In particular, as 6 "-> ~o 
the perturbation is small  at 0 < ~- -< r . .  Since convergence of Shvets's 
method [5] in the solution of linear boundary-value problems has been 
proved by Gandin [8], while the perturbation due to the heat of reac-  
tion is small, it may be assumed that the successive approximations 
converge in our case too, at least for 6 >> 1, 00 >> and 0 < T <-- %. In 
particular, for small  values of "r the error of approximate solution (1.6) 
does not exceed 8~/o. 

From (1.9) it  is clear that ~-. depends significantly on 6; 8 is the 
square of the reduced characteristic dimension. It is clear from (1.6) 
chat for any A > 0 the quantity A > 0 and, consequently, the greater 
r ,  the greater the thickness of the boundary layer. As follows from 
(1.8), at small A, the quantity 6 tends to infinity, and falls as A.  in- 
creases, approaching 0 as A.  --> =. Conversely, large values of 6 
correspond to smaller values of A.. Consequently, from this analysis it 
follows that as 6 decreases the heating t ime increases, and conversely. 

Thus, the greater the reduced characteristic dimension of the body, 
the shorter is the heating t ime and, consequently, the more easily the 
reacting substance is ignited. 

At very large values of 6 it is possible, using the method of a small 
parameter  [10], to find an approximate solution of Eq. (1.6) withini t ial  
condition (1.8). 

By setting 

, Ul u,2 , 

and substituting (i.i0) in (1.8), we obtain 
6no 

u0' - -  ~ : 6, u0 (0) = 0: 
6~1 (i.ii) 

~.{ - -  00 s --  - -  81/~70.  ,~ ( 0 ) -  0 .  

Solving the Canchy problems (1.i1), we find 

uo = Oc, ~ (p -- 1), 

u , & O o % [ g p _ f _ _ p ; r e f g  gp---2~ l (p {;'c = P x P ~ o a ] .  (1.12) 

Thus, using (1.10) and (1.12) we can determine the v a h e  of u 
correct to terms containing the quantity 6 -z as a factor. 

Substituting the value of u obtained in (1.8) and solving the re-  
suiting equation by the method of a small parameter  [11] for % we 
find 

Oo ~ 9 , ~/ , { o - 

= - v  < T )  L =r~ t ~ j  - 
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- .  Jt (1.13) 
It is c l ea r  from (1.13) tha t  as 6 "-~ ~o hea t ing  t i m e  decreases asymp-  

to t ica l ly ,  tending to the va lue  obta ined for ign i t ion  by a p l a t e  [12] 

O0 :~ 200 00 ~ 300 (1.14) 
" r . - : : ~ 7 1 n  200- -3  ~ ,i @ - ~  ( 0 0 > ~ t ) .  

Compar ing  (1.14) with the formula  for r .  obta ined in  [3] on a 

computer ,  we see that  the hea t ing  t i m e  de te rmined  from (1 .14)a lmost  

coincides  with the results of the numer i ca l  c a l cu l a t i on  [3]. 

Equation (1.13) is the more accura te ,  the larger  5. In par t icular ,  

when 00 = 10, 6 = 3.244 and 5 = 4335.6 we have  A,  = 0.204; in tegra t ing  

(1.9) by Simpson's  rule  for ten ordinates [11], we find ~', = 111.5 and 

% = 29.5, and from (1.13) we obtain ~'. = 108.7 and ~', = 29.6, re -  

spec t ive ly .  
Thus, the ef fect  of the surface curvature  and f in i te  dimensions of 

the hea ted  body are the more impor tant ,  the smal ler  6. 

w We consider the  ign i t ion  of a reac t ing  substance by a hea ted  

sphere on the assumption that  the the rmophys ica l  coeff ic ients  are 

constant  and the reac t ion  is zero-order.  The problem reduces to the 

solut ion of the equa t ion  

O~O aO 2 00 (2.1) 
0,5 = 6  0~ ~ 0z - -  ~e~ 

with boundary and i n i t i a l  condit ions (1.3). 
As before, as the first approx imat ion  for 0(x,~') we obta in  (1.4). 

Omi t t ing  the i n t e rmed ia t e  ca lcu la t ions ,  which are s imi la r  to those 

a l ready presented,  we write the  f ina l  results: 

200x . 50cA' 
0 5 =  --~-- (in z - -  1) -~ ~ X 

5A(t  - -  "~) (2.2) 
X [2 - -  3~ "~ -F ~3 _~_ (1 - -  x) (A 5 - -  3)1 -k + 

._~ 6A 5 I- 0~(1 - - : c ) ]  0o(3--:c) 
L ~ - < ' ~ p ~ I  + ~ + 

200 . (2.3) 
"t- ~ {'1 -~- (t -J- A) [In (t + A) - -  t l )  (1 - -  z); 

3655 :F 3 [.2 l n ( ,  I -A )  1] A ( O ) = O ;  
5 A A ' - -  005 A ' 

005 [2 (3 -f- 2A,) In (1 -~- A,)  - -  3A,] (2.4) 
6 == (20o - -  3) h * * - -  

6 f A~dA 
% : ~3- 3 In (t ~- A) - -  A -t- 600-5A ~ " (2.5) 

0 

Here and above,  we have  omi t t ed  te rms  conta in ing  the quant i ty  

e = e -~176 as factor.  
From (2.3) i t  is easy to es tabl ish tha t  at  A < 1 the quant i ty  inereases  

with increase  in  ~', whi le  from F-q. (2.4) we find that  as 6 increases  the 
quant i ty  A ,  decreases;  consequently,  the smal le r  5, the  greater  is the 

hea t ing  t ime ,  and conversely.  For large  values  of 6 we can  use the 

smal l  pa ramete r  method to find an approx imate  solut ion of Cauehy 

problem (2.3): 

} [VP  - -  ~ - -  P arc tg  l fp~-[--  l ]  (2.6) 

Substi tuting (2.6) into (2.4) and solving the equat ion  obta ined by 
the smal l  pa ramete r  method for ~', we find an approx imate  ana ly t i c  

expression for the hea t ing  t i m e :  

, .  = ~ - I n  ~ [  + X (2.7) 

' 3 V ',~ 

• [arc tg \29~ -- 3) 

This equat ion  is the more accura te ,  the larger  6. 
Comparing (1.13) and (2.7), we see that  at  the same values  of 5 

and 00 the va lue  of (2.7) is  greater  than that  of (1.13). 
Thus, if  a cyl inder  of a ce r t a in  radius is hea ted  to a ce r t a in  t e m -  

pera ture  and igni tes  a reac t ing  gas, the gas  wi l l  not be ign i ted  by a 
sphere of the same radius hea ted  to the same tempera ture .  This is 
because  at  the same radi i  t h e m e a n  curvature  of the  sphere is greater  

than  t h a t o f  a cy l ind r i ca l  surface. Ca lcu la t ion  of ~', by n u m e r i c a l  
in tegra t ion  of (2.5) confirms this conclusion.  Thus, for 00 = 10, 5 = 
= 4335.6 and A,  = 1 /4 ,  from (2.5) we find ~'. = 31.4, which exceeds  

the  t i m e  for ign i t ion  by a cyl inder  by a factor of 1.06. 

The hea t ing  t i m e  is uniquely  re la ted  to the t empera ture  of the 

hea ted  body. Since the  hea t ing  t i m e  decreases as the charac te r i s t ic  
d imens ion  increases ,  the t empera ture  of the hea ted  surface at which 

ign i t ion  takes  p l ace  ( igni t ion tempera ture)  also decreases wi th  in -  

crease in  the charac te r i s t i c  dimension,  t end ing  a sympto t i ca l l y  to the 

ign i t ion  t empera tu re  of a heated p la te .  This conclusion is consistent  
with the expe r imen ta l  data  of [13]. 

In conclusion we note that  the solution of problems (1.1), (1.3) and 

(2.1), (1.3) by the  Shvets method [5] is the more accura te ,  the smal le r  
A compared  with unity.  

w In order to e s t ima te  the effect  of hea t  transfer to the ambien t  

med ium,  we wi l l  consider the case of ign i t ion  from the end face of a 

r eac t ing  s emi - in f in i t e  cyl inder .  It is assumed that  a constant t e m p e r a -  

ture T U is m a i n t a i n e d  at  the  l a t e r a l  surface of the cyl inder ,  which wi l l  

be the case i f  the reac t ing  substance is  enclosed in  a vessel  whose 

wails  have  a la rge  heat  capac i ty  or when the reac t ing  substance is 

subjected to in tense  cool ing by a fluid. Ma themat i ca l ly ,  the problem 
reduces to the solution of 

o29 0(09) (3.1) 
= x ~ + ~  ~ +&~e ~ 

wi th  boundary and i n i t i a l  condit ions:  

O (~, x, 0) = --  Oox~, 0 (~, x, A) = - -  00, 
(3.2) 

O0 x-0 O--z-, _ = 0 ,  0 ( r , l , z )  --Oo, a ( 0 ) = 0 .  

Here, z = z l / r  0 is the dimensionless  a x i a l  coordinate.  

In der iv ing (3.1) we employed  the Frank-Kamenetsk i i  t ransforma-  

t ion [7] for exp - E/RT and in  deriving (3.2) we introduced the t h i c k -  
nessof the t empera ture  boundary layer .  

We wi l l  solve boundary-va lue  problem (8.1) and (3.2) by means of 

a combina t ion  of Shvets 's  method [5] and the method of in tegra l  r e l a -  

t ions [6]. We in tegra te  (3.1) with respect  to x from 0 to 1, substi tuting 

O~w(T,  z) (t--x ~) -- Oox% 
(3.3) 

e ~  ~ +  ex% ( w = 0 ( T ,  0, z)). 

As a result  we obta in  the  equa t ion  

OZw/c3zi= 60w/OX q- 8 (w q- O o ) - - 6 ( e  w q- e) (3.4) 

with boundary and i n i t i a l  condit ions:  

w ( ~ , z ) = 0 ,  w ( A , ~ ) = - - O o ,  A ( 0 ) = 0 .  (3.5) 

We solve (3.4) and (3.5) by Shvets 's  method [5]. As the first approxi-  

ma t ion  we obta in  

w 1 = --0oZ / h . (3.6) 

Substi tuting w I in  the r ight  side of (3.4) and in tegra t ing  the result  

tw ice  with respect  to z, using the first and second conditions of (8.5) 

we find 
50oA'z 5 40oZ 3 6A 2 ~ / Ooz\q 

w 2 - -  0A 5 3A -t-40~176 Oog-o5 L t - - e x p ~ . - ~ ) I j  - 

x (o0+  -A5 + v + 

Satisfying Shvets 's  condi t ion  [5], we obta in  an equat ion  for 

6 A A ' =  A 2 ( 3 6 / 0 8 o - 4 )  .-? 3 .  (3.8) 

In tegra t ing  (3.8) with a l lowance  for the iast  condit ions of (3.5), we 

find 5 
T = Yb- In (1 + bA2), 

I (exp~b'r  1) (b 5 4 I (3.9) A 2 =  %-  5 -  -- Oo 8 3 s 
It is c lear  from (3.7) and (3.8) that  at modera te  values of ~" the 

per turbat ion of t empera ture  prof i le  and boundary- layer  thickness is 
smal l .  In the absence of r eac t ion  heat  the t empera tu re  gradient  a t  x = 
= O, found by Shvets 's  method  [5], differs from the corresponding exact  
values  [14] by 8~o at ~" and by 22~ at r >> 1. By means of the solution 
for the problem of t he rma l  explosion in  an in f in i te  cyl inder  i t  ha sbeen  
establ ished tha t  approx imat ion  (3.8) and averaging  a l l  the quant i t ies  
with respect  to x introduces an error ~. l l~  

1 2 2  



Thus, it may be provisionally assumed that the greatest error to be 
expected in solving boundary-value problem (3.1) and (3.2) by a com- 
bination of the Shvets method [5] and the method of integral relations 
[6] does not exceed 22~ 

Making (8.7) satisfy the Zel'dovich condition [9] and using the 
first expression of (3.9) we obtain the heating time 

50o 3 5 (200 -- 3) -- 4003 (3.10) 
~c,-- 2(4900__35) In 200(5_400~ ) 

and using the second expression of (3.9), the thickness of the boundary 

layer 
300 % 

A ,  = Oo ( ~ (200- 3) -- 40o ~ ) " (3.11) 

From (3.10) it is easy to see that as 

5 ~ 5 ,  = 4088 (3 .12)  

the quantity T, ~ % i .e. ,  ignition does not take place. 
If the heat transfer from the lateral surface of the reacting cylinder 

is governed by Newton's law, then, similarly, we find 

8008 (4 + B) 
"c. - -  ~m (4 + B) [t + (7 -- s -- en0o) n "-z] -- 4B0o ~ X (3.13) 

208 {m (4 + B) [ t +  ("( -- e) n-l] - 4B0o ~ 
X In m (4 + B) {200-- 3 + [n0o (2T @ s) @ 3 (s -- "r)l n~} -- 4B00 ~ 

It is easy to see that the heating tends to infinity if 

8B0o" 
8 --" 6, = (2 + B) [2 + (T _ s) (2 + B)] • 

~ (2 + B) 2 BOg ~ (3.14) 
X m - -  ~ - - f f  , n = 2 +  B , T = e x p - - 2 + B ]  

Here, B = o~o/k is the Blot number, c~ the heat transfer coefficient, 
and r 0 the radius of the cylinder. 

As B --~ oo (8.12) follows from (3.14), and as B --~ 0 or m --~ oo 
from expression (3.13) we obtain the heating time for ignition by a 
heated plate (1.14). We obtain the same results from (3.10) as 5 "-~ ,o. 

Thus, to obtain ignition of a reacting cylinder from the end face 
in the presence of Newtonian heat transfer from the lateral surface, it 
is necessary for 6 to be greater than 6., where 6, is given by (3.14). 
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