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Theoretical studies [1-3], concerning the ignition of reacting sub-
stances, deal with ignition by a heated infinite plate. However, actual
igniters have finite dimensions and a nonzero mean swface curvature.
Moreover, under actual conditions, in addition to unilateral heating of
the reacting substance, there is heat transfer to the ambient medium.

This study, following [4], employs the methods of Shvets [5] and
integral relations [6] to evaluate the effect of these factors on the
process of ignition of a reacting substance.

§$1. We will consider the ignition of a reacting substance by a
heated cylinder. We neglect burnup and assume that the thermophysical
coefficients are constants, which makes the heat capacity of the
cylinder infinitely large. Then, mathematically, the problem reduces
to solving
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Here, x is the dimensionless variable radius; r; is the cylinder
radius; & is a dimensionless parameter, T is a dimensionless time, q is
the reaction energy; A is the thermal conductivity; E is the activation
energy; R is the universal gas constant; t is time; T is the temperature
of the heated cylinder; T is the initial temperature of the reactant.
 is a dimensionless temperature; p is density; ¢ is specific heat; kg is
the preexponential factor.

In deriving Eq. (1.1) the Frank-Kamenetskii transformation [7] for
exp — E/RT was employed.

Boundary-value problem (1.1) and (1.2) describes the ignition of a
reactant by a heated wire which isinstantaneously heated to a tem-
perature T, which remains unchanged up to the moment of ignition,
With a certain condition [3] this problem also describes the ignition of
reacting substances for first-order reactions.

Since, under actual conditions, the wire is heated gradually and
has a finite heat capacity and the reactant is consumed, the heating
time found from (1.1) and (1.2) will be less than the true value.

By virtue of the exponential temperature dependence of the
chemical reaction rate, an intense temperature change occurs in a
narrow boundary layer at the heated surface. Accordingly, it is de-
sirable to iniroduce the thickness of the boundary layer A = A(r). Then
boundary and initial conditions (1.2) take the form:
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To solve (1.1) and (1.3) we use the method of Shvets [5], which,
apart from its simplicity, has good convergence [8]. As the first ap-
proximation for the temperature we obtain

O — — 9"(’;_".1_). 1.4

Substituting (1.4) into the right side of (1.1), integrating the result
twice with respect to x, and using (1.3), we have
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Satisfying Shvets's condition 80/8x =0 at x = A [5], we obtain a
first-order differential equation for A(T):
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Satisfying the Zel'dovich condition 89/8x =0 at x = 0 [§], we find
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Eliminating the quantity éAA';, from Eq. (1.6) and (1.7), we obtain
0P (34+-24,)In(t+A) (1.8)
= (20, — 3) A8 .

Solving Eq. (1.8), we find the thickness of the heated layer A .

Knowing A,, we easily obtain the heating time
A
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In the limit as § == <, from (1.5) and (1.9), we obtain the tem-
perature profile and the heating time for ignition by a heated plate.

From (1.5) and (L.6) it is easy to see that at moderate values the
perturbation of temperature profile and boundary-léyer thickness due
to the heat of the chemical reaction is small. In particular, as § > «
the perturbation is small at 0 <1 = 7_. Since convergence of Shvets's
method [5] in the solution of linear boundary-value problems has been
proved by Gandin [8], while the perturbation due to the heat of reac-
tion is small, it may be assumed that the successive approximations
converge in our case too, at least for §> 1,6 > and0<r =17 In
particular, for small values of 7 the error of approxunafe solution (1.5)
does not exceed 8%.

From (1.9) it is clear that T depends significantly on §; & is the
square of the reduced characteristic dimension. It is clear from (1.6)
that for any A > 0 the quantity A > 0 and, consequently, the greater
T, the greater the thickness of the boundary layer. As follows from
(1.8), at small A the quantity & tends to infinity, and falls as A, in-
creases, approaching 0 as A, — «. Conversely, large values of 8
correspond to smaller values of A_. Consequently, from this analysis it
follows that as & decreases the heating time increases, and conversely.

Thus, the greater the reduced characteristic dimension of the body,
the shorter is the heating time and, consequently, the more easily the
reacting substance is ignited.

At very large values of & it is possible, using the method of a small
parameter [10], to find an approximate solution of Eq. (1.6) withinitial
condition (1.3).

By setting
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and substituting (1.10) in (1.6), we obtain
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Solving the Cauchy problems (1.11), we find
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Thus, using (1.10) and (1.12) we can determine the value of u
correct to terms containing the quantity 6-* as a factor.
Substituting the value of u obtained in (1.8) and solving the re-~
sulting equation by the method of a small parameter [11] for T, we
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It is clear from (1.13) that as § = « heating time decreases asymp-~

totically, tending to the value obtained for ignition by a plate [12]
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Comparing (1.14) with the formula for T, obtained in [3] on a
computer, we see that the heating time determined from (1.14)almost
coincides with the results of the numerical calculation [3].

Equation (1.13) is the more accurate, the larger §. In particular,
when 6, = 10, § = 3.244 and & = 4335.6 we have A = 0.204; integrating
(1.9) by Simpson's rule for ten ordinates [11], we find 7, = 111.5 and
7,=29.5, and from (1.18) we obtain 7, = 108.7 and 7, = 29.6, re-
spectively.

Thus, the effect of the surface curvature and finite dimensions of
the heated body are the more important, the smaller 6.

$2. We consider the ignition of a reacting substance by a heated
sphere on the assumption that the thermophysical coefficients are
constant and the reaction is zero-order. The problem reduces to the
solution of the equation
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with boundary and initial conditions (1.3).

As before, as the first approximation for &(x,T) we obtain (1.4).
Omitting the intermediate calculations, which are similar to those
already presented, we write the final results:
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Here and above, we have omitted terms containing the quantity
e — ¢ %as factor.

From (2.8) it is easy to establish that at A < 1 the quantityincreases
with increase in 7, while from Eq. (2.4) we find that as § increases the
quantity A, decreases; consequently, the smaller §, the greater is the
heating time, and conversely. For large values of § we can use the
small parameter method to find an approximate solution of Cauchy
problem (2.3):
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Substituting (2.6) into (2.4) and solving the equation obtained by
the small parameter method for 7, we find an approximate analytic
expression for the heating time:
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This equation is the more accurate, the larger 6.

Comparing (1.13) and (2.7), we see that at the same values of &
and 0, the value of (2.7) is greater than that of (1.13).

Thus, if a cylinder of a certain radius is heated to a certain tem-
perature and ignites a reacting gas, the gas will not be ignited by a
sphere of the same radius heated to the same temperature. This is
because at the same radii themean curvature of the sphere is greater
than thatof a cylindrical surface. Calculation of 7, by numerical
integration of (2.5) confirms this conclusion. Thus, for 63 =10, 6 =
=4335.6 and A, = 1/4, from (2.5) we find 7, = 31.4, which exceeds
the time for ignitdon by a cylinder by a factor of 1.06.
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The heating time is uniquely related to the temperature of the
heated body. Since the heating time decreases as the characteristic
dimension increases, the temperature of the heated surface at which
ignition takes place (ignition temperature) also decreases with in-
crease in the characteristic dimension, tending asymptotically to the
ignition temperature of a heated plate. This conclusion is consistent
with the experimental data of [13].

In conclusion we note that the solution of problems (1.1), (1.3) and
(2.1), (1.8) by the Shvets method [5] is the more accurate, the smaller
A compared with unity.

§3. In order to estimate the effect of heat transfer to the ambient
medium, we will consider the case of ignition from the end face of 2
reacting semi-infinite cylinder. It is assumed that a constant tempera-
ture T, is maintained at the lateral surface of the cylinder, which will
be the case if the reacting substance is enclosed in a vessel whose
walls have a large heat capacity or when the reacting substance is
subjected to intense cooling by a fluid. Mathematically, the problem
reduces to the solution of
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with boundary and initial conditions:
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Here, z = 2/t is the dimensionless axial coordinate.

In deriving (3.1) we employed the Frank-Kamenetskii transforma-
tion [7] for exp - E/RT and in deriving (3.2) we introduced the thick~
nessof the temperature boundary layer.

We will solve boundary~value problem (3.1) and (3.2) by means of
a combination of Shvets's method [5] and the method of integral rela-
tions [6]. We integrate (3.1) with respect to x from 0 to 1, substituting
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As a result we obtain the equation
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with boundary and initial conditions:

w(w,z) =0, w(A1)=—0, A@0)=0. (3.5)
We solve (3.4) and (3.5) by Shvets's method [5]. Asthe firstapproxi-

mation we obtain

wy = —Bgz/ A. (8.8)

Substituting wy in the right side of (3.4) and integrating the result
twice with respect to z, using the first and second conditions of (3.5)
we find
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Satisfying Shvets's condition [5], we obtain an equation for
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Integrating (3.8) with allowance for the last conditions of (3.5), we
find s
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It is clear from (3.7) and (3.8) that at moderate values of T the
perturbation of temperature profile and boundary-layer thickness is
small. In the absence of reaction heat the temperature gradient at x =
=0, found by Shvets's method [5], differs from the corresponding exact
values [14] by 8% at T and by 22% at 7 > 1. By means of the solution
for the problem of thermal explosion in an infinite cylinder it hasbeen
established that approximation (3.3) and averaging all the quantities
with respect to x introduces an error ~11%.



Thus, it may be provisionally assumed that the greatest error to be
expected in solving boundary-value problem (3.1) and (3.2) by a com-
bination of the Shvets method [] and the method of integral relations
[6] does not exceed 22%.

Making (3.7) satisfy the Zel'dovich condition [9] and using the
first expression of (3.9) we obtain the heating time
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and using the second expression of (3.9), the thickness of the boundary
layer
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From (3.10) it is easy to see that as
8= b, = 402 (3.12)

the quantity T, —> %, i,e., ignition does not take place.
If the heat transfer from the lateral surface of the reacting cylinder
is governed by Newton's law, then, similarly, we find
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It is easy to see that the heating tends to infinity if
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Here, B = ar /A is the Biot number, « the heat transfer coefficient,
and r, the radius of the cylinder.

As B=> e« (3.12) follows from (3.14), and as B~> Q0 or m => «
from expression (3.18) we obtain the heating time for ignition by a
heated plate (1.14). We obtain the same results from (3.10) as § = <,

Thus, to obtain ignition of a reacting cylinder from the end face
in the presence of Newtonian heat transfer from the lateral surface, it
is necessary for § to be greater than &, where §_ is given by (3.14).
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